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MATHEMATICAL MODELING FOR ONE NEW METHOD

OF BREAKING ICE COVER

UDC 539.3V. I. Odinokov and A. M. Sergeeva

The spatial problem of determining the stress–strain state of an ice plate of finite thickness broken
by a patented method is solved using the theory of small elastoplastic strains and a proven numerical
method.
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Introduction. The extension of the navigation season, especially in northern seas, is an important problem.
This is demonstrated by numerous patents concerned with developing methods for breaking ice cover [1]. In the
present paper, a mathematical model for a new technological process of ice cover breakup is constructed. The
process is patented [2] and allows breakup of ice of up to three meters thick. The idea of the method is that an
evacuated space of necessary dimensions is produced under ice, and the latter breaks up under the action of its own
weight and ambient atmospheric pressure. To implement this method, a container having two cheek plates moving
in a horizontal direction perpendicular to the waterway (Fig. 1) is placed under ice. The two side walls and the
bottom prevent water from filling the container when the cheek plates are moved apart. From the outer edges, the
container is fully open (there is only a drive for moving the cheek plates), and the removal of water by the cheek
plates is not hindered. The rate of motion of the cheek plates v and the container depth h should be such that
when the cheek plates are moved apart a distance at which ice breakup begins, the water fills the container through
the available gaps by not more than 2/3 of its volume.

A calculation of the filling of the container with water was performed in [3]. The rate of separation displace-
ment of the cheek plates is given by the analytical formula

v = 3M/(2bh), (1)
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Here l is the displacement of the cheek plates from the vertical plane of symmetry, δ is the gap between the movable
cheek plates and the motionless parts of the container, and, hence, the ice plate, q is the gravity acceleration, γ is
the relative water density, σ0 is the atmospheric pressure, and b1 = 2b is the total width of the container.

Formulation and Solution of the Problem. The spatial problem of the strain of ice cover under
atmospheric pressure and the weight of ice is solved. Since the problem is symmetric, we consider one-fourths of
the strain area (Fig. 2a). Formalizing the deformation model, we assume that ice I rests on the container case II
and the elastic foundation (water) outside the container. Inside the container, ice is deflected under the action of
its own weight and ambient atmospheric pressure. The medium being deformed is considered elastic and isotropic,
and the elastic displacements small. Inertia forces are ignored because of the smallness of the rate of separation
displacement of the cheek plates. Using the equations of the theory of elasticity for small strains, we write the
following system of differential equations in Cartesian coordinates:
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Fig. 1. Diagram illustrating the formation of an evacuated space under ice: movable cheek plates (1), side walls (2),
bottom (3), and outer edges of the container (4).
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Fig. 2. Diagram of strain calculations for the ice plate: spatial diagram (a) and diagrams in the planes
x1x2 (b) and x2x3 (c).

σij,j + Fi = 0, i, j = 1, 2, 3, F2 = F3 = 0; (2)

σij − σδij = 2Gε∗ij , i, j = 1, 2, 3, ε∗ij = εij − (1/3)εδij , ε = εii,

σ =
1
3
σii, εij =

ui,j + uj,i

2
, δij =

{
1, i = j

0, i �= j

(3)

εii = 3kσ. (4)

The thermal heat conductivity equation for the stationary case is written as
∂

∂xi

(
λ
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)
= 0. (5)
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In (2)–(5), G = G(θ) is the shear modulus, θ is the temperature, k = k(θ) is the bulk compression coefficient,
σij are the stress tensor components, εij are the strain tensor components, Fi are projections of the specific bulk
force onto the xi axes, ui are projections of displacements onto the coordinate axes xi (i = 1, 2, 3), and λ is the
thermal conductivity. Equations (2)–(5) are written with allowance for summation over repeated indices.

Ice cover can be treated as a plate of finite thickness in which
∂θ

∂x2
=

∂θ

∂x3
= 0.

Then, Eq. (5) becomes
∂

∂x1
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)
= 0 (6)

with the boundary conditions θ|x1=0 = 0 and θ|x1=h = θ1. The coefficient λ(θ) varies with temperature according
to the linear law [8]

λ = λ0(1 + aθ). (7)

Integrating Eq. (6) and setting θ0 = 0, we obtain
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)
. (8)

According to the data of [8], a = −0.0159 and λ0 = 2.22 W/(m ·K).
The boundary conditions of the problem are given by

σ11|S8 = −σ0, (σ12 = σ13)|S8 = 0, (σ11 = σ12 = σ13)|S1 = 0,

(σ12 = σ13)|S3 = 0, σ21|S4 = 0, σ23|Si = 0 (i = 4, 6);

(σ12 = σ13)|S2 = 0, σ31|S5 = 0, σ32|Si = 0 (i = 5, 7);
(9)

σ11|S3 = −q1, σ11|S2 = σ∗, u2|Si = 0 (i = 4, 6), u3|Si = 0 (i = 5, 7),

where q1 = σ0 + γh∗ (h∗ is the depth of dip of ice).
We note that the container filled with water has positive buoyancy. The separation displacement of the cheek

plates of the container gives rise to a force which is directed from below the container sides to the ice. This force
arises from the action of atmospheric pressure and the displaced water due to the cavity formed in the container.
Then, the buoyant force is P = blh1γ, where h1 is the height of the cavity formed in the container (h1 < h because
water flows inward during the separation displacement of the cheek plates), γ is the relative density of water; and
σ0 is atmospheric pressure.

Hence, the stresses on the container sides S2 (see Fig. 2) are calculated by the formula

σ∗ = −P/[(l+ ∆)∆ + b∆] = σ11|S2 . (10)

That is, the separation displacement of the cheek plates results in the formation of a free space under the ice plate,
and ice, being deformed, begins to immerse, together with the container, in water under the action of its own
weight and ambient atmospheric pressure. On the outer faces S6 and S7 (Fig. 2), we assume that the ice is fastened
and cannot move into water. This simulates the relationship between the examined ice pillow and the external
undeformable foundation. This relationship is given by the equations [7]

σ21|S6 = −ψ6τSvslid/|v|; σ31|S7 = −ψ7τSvslid/|v|. (11)

Here ψ6 = ψ7 = 1000 and vslid is the rate of sliding of the ice pillow relative to the foundation (vslid = v1|S3 − v∗1 ,
where v∗1 is the rate of motion of the foundation). In our case, v∗1 = 0, |v| is the normalizing rate, and τS is the
conditional yield limit of ice. Calculations show that for the adopted values of ψi (i = 6, 7) the displacement u1 near
S6 and S7 is 0.0007 mm. In this case, the tangential stresses on the surfaces S6 and S7 do not exceed 0.02 MPa.

To solve the system of differential equations (2)–(4) subject to constraint (8) and boundary conditions
(9)–(11), we use the numerical method of [5]. According to this method, the strain region is broken into orthogonal
elements of finite sizes; for each element, system (2)–(4) is written in difference form and is solved using the algorithm
developed with allowance for the mixed boundary conditions (9). As a result, we have the stress field σij and the
displacement field ui on the faces of each element.
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Fig. 3. Diagrams of the stresses σ22 (a) and σ33 (b) for various ice thickness: h0 = 1 (1), 2 (2), and
3 m (3); h1 = 2 m, l = 10 m, b = 3 m, l0 = 20 m, b0 = 13 m, and δ = 1.

In implementing the indicated numerical method, we used the numerical scheme developed in [6] to solve
spatial problems, according to which the basic system of difference equations is convolved into an equivalent system
which has an order of magnitude smaller number of unknowns than the basic system. The algorithm developed
in [7] is used to calculate the matrix of the new equivalent system, which is solved using a standard program.

The modeling was performed using the properties of fresh-water ice. It should be noted that fresh-water ice
is stronger than sea ice.

According to [4], E = (87.6− 0.21θ− 0.0017θ2) · 102 MPa, the Poisson’s ratio ν = 0.5+0.003θ (θ > −40◦C),
the bulk compression coefficient k = (1 − 2ν)/E, and the shear modulus G = E/(2(1 + ν)).

In formula (8), we set θ1 = −30◦C.
The algorithm of solution of the problem is as follows.
1. Initial conditions are specified.
2. The strain regions being studied is broken into elements of orthogonal shape. The matrix of the arc

lengths of the elements is calculated.
3. The matrix of the boundary conditions is specified according to (9).
4. The temperature field for each element is calculated by formula (8).
5. The values of (G)n and (k)n for each element (n is the element number) are calculated using the formulas

given above.
6. The matrix of the coefficients and free terms of the new equivalent system is calculated in accordance

with the sequence of calculations indicated above.
7. The system of the linear equations is solved using the standard program.
8. The values of σij and ui are calculated for each element (for its faces IJ).
9. The completion of the calculation.
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Fig. 4. Diagrams of the stresses σ22 (a) and σ33 (b) for b = 5 (1) and 3 m (2); h1 = 2 m,
l = 10 m, l0 = 20 m, h0 = 3 m, and δ = 1.

Results. Figure 3 gives diagrams of the stresses σ22 (a) and σ33 (b) for various ice thicknesses h0 = 1, 2, and
3 m. As one might expect, the tensile stresses decrease with increase in the ice thickness. The largest values of the
tensile stresses are reached at the bottom of the ice in the center of the plane x2 = 0 (see Fig. 3b). It is interesting
to note that the diagram of the stress σ22, passing the container side in the plane x3 = 0, changes qualitatively
in nature (see Fig. 3a), whereas the diagram of the stress σ33 in the plane x2 = 0 (Fig. 3b), passing through the
side, remains qualitatively the same, decaying monotonically to the edge x3 = b0. The calculation results show that
ice breakup certainly occurs for h0 = 1 and 2 m and most likely for h0 = 3 m. The strength limit of the ice for
the bending of a cut standard sample is 2–3 MPa. Usually, the experimental strength for ice rafts of large sizes is
several orders of magnitude lower than laboratory data and is σstrength = 0.04–0.09 MPa [8], i.e., the scale factor is
of great significance in these experiments. Diagrams of the tangential stresses σij (j �= i) are not given in the paper
since they are smaller than the normal stresses by approximately an order of magnitude and are not determining
for ice breakup in this case.

Figure 4 shows diagrams of the stresses σ22 and σ33 for h0 = 3 m and b = 3 and 5 m. The values of the
tensile stresses increase almost proportionally to the increase in b.

Figure 5 shows how the diagrams of the stresses σ22 and σ33 vary as the container is filled with water, i.e.,
as the value of h1 varies. The results show that as the container is filled with water, the pressure of container side
on the ice decreases and the container is more strongly drowned by the mass of ice and, consequently, the ice is
more intensively deformed, as is suggested by an increase in the stresses σ22 (a) and σ33 (b).

As follows from Fig. 5, the stresses σ22 and σ33 depend greatly on the degree of filling of the container with
water, i.e., on the pressure exerted by the container sides on the ice. The container is filled with water as the cheek
plates are moving apart (see Fig. 1).
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Fig. 5. Diagrams of the stresses σ22 (a) and σ33 (b) for h1 = 1 (1), 2 (2), and 0.5 m (3); b = 3 m,
l = 10 m, l0 = 20 m, b0 = 13 m, δ = 1, and h0 = 2 m.
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Fig. 6. Variation (by height h0) in the stresses σ22 (a) and σ33 (b) versus the separation displacement
of the cheek plates: l = 1 m (1), 3 (2), 6 (3), 8 (4), and 10 m (5); l0 = 20 m, b0 = 13 m, b = 3 m,
h = 3 m, δ = 10 mm, σ0 = 1 kg/cm2, γ = 10 kg/cm3, q = 10 m/sec2, and v = 20 m/min.
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Fig. 7. Variation in the stresses σ11, σ22, and σ33 versus the
separation displacement of the cheek plates for x3 = x1 = 0
(from the data of Fig. 6).

According to the formula of [3], the volume of the water filling the examined part of the container equals
V = Mτ/2 = Ml/(2v) (v is the rate of displacement of the cheek plates), the volume of the current part of the
container is V̄k = lbh, and the volume of the container not filled with water is V̄k1 = lbh1, where h1 is the height of
the space free from water (the distance from the inner surface of ice to the water surface in the container).

Thus, we write the equation lbh1 +Ml/v = lbh, whence

h1 = h−M/(2bv). (12)

Let us set b = 6 m, h = 3 m, δ = 10 mm, σ0 = 1 kg/cm2, γ = 1 kg/cm3, q = 10 km/sec2, and v = 20 m/min.
The quantity h1, which determines the stress on the surface S2, is defined by formula (12).

Some results of the numerical solution are presented in Figs. 6 and 7.
The stresses σ22 reach the largest value on the symmetry axis x2 = 0, x3 = 0. Curves of σ22(h0) are presented

in Fig. 6a. In the process of separation of the cheek plates, the tensile stresses σ22 for x1 = 0 increase to a certain
value. Curves 4 and 5 almost coincide; even for l = 8 m, the stresses σ22|x1=0 are somewhat higher than those for
l = 10 m. Figure 6b shows the curves σ33(h0) for x2 = 0 and x3 = 0. It is evident from the figure that the stress σ33

for x1 = 0 increases as the cheek plates are separated and it is higher than the stress σ22 for the same values of l.
Figure 7 shows the stresses σ22 and σ33 for x3 = x1 = 0 versus the separation displacement of the cheek plates. In
addition, the figure shows the variation in the stress σ11 at the container edges during the separation of the cheeks.
Although the container is increasingly filled with water, the pressure on the container edges grows. This suggests
that although the container is filled with water, the volume of the cavity free from water increases more rapidly at
the specified rate v.

REFERENCES

1. V. V. Bogorodskii, V. P. Gavrilo, and O. A. Nedoshivin, Ice Breakup. Methods and Means [in Russian], Gidrom-
eteoizdat, Moscow (1983).

2. V. I. Odinokov and V. M. Kozin, “Method of breaking ice cover,” Russian Federation Patent 2220878, Bull.
No. 1, Publ. 01.10.04.

3. A. M. Polyarus and D. Yu. Romanov, “One method of breaking ice cover,” in: Problems of the Mechanics
of Continuous Media and Related Issues of Mechanical Engineering, Proc. Second Conf. (Vladivostok, Russia,
August 31–September 6 2003), Inst. of Machine Science and Metallurgy, Far East Division, Russian Academy of
Sciences, Komsomol’sk-on-Amur (2003), pp. 23–28.

272



4. V. P. Berdyannikov, “Elastic modulus of ice,” Tr. GPI, No. 7(61), 13–23 (1948).
5. V. I. Odinokov, Numerical Investigation of the Deformation of Materials by a Coordinate-Free Method [in Rus-

sian], Dal’nauka, Vladivostok (1995).
6. V. I. Merkulov, V. I. Odinokov, and N. S. Lovizin, “One approach to the numerical solution of problems of

elastoplastic deformation of spatial bodies,” in: Kuzn. Shtamp. Proizv. Obr. Met. Davl., No. 6, 12–19 (2001).
7. E. I. Makeranets and V. I. Odinokov, “Calculation of plastic flow around hollow oval cylinders of infinite length,”

Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, 2, 103–110 (1976).
8. V. V. Bogorodskii and V. P. Gavrilo, Physical Properties. Modern Methods of Glaciology [in Russian], Gidrome-

teoizdat, Leningrad (1980).

273



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /MathBold-Italic
    /MathCm-Italic
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


